Paul A. Schweitzer
American mathematician
Paul A. Schweitzer's AcademicInfluence.com Rankings
Download Badge
Mathematics
Paul A. Schweitzer's Degrees
- PhD Mathematics Princeton University
- Masters Mathematics Stanford University
Why Is Paul A. Schweitzer Influential?
(Suggest an Edit or Addition)According to Wikipedia, Paul Alexander Schweitzer SJ is an American mathematician specializing in differential topology, geometric topology, and algebraic topology. Schweitzer has done research on foliations, knot theory, and 3-manifolds. In 1974 he found a counterexample to the Seifert conjecture that every non-vanishing vector field on the 3-sphere has a closed integral curve. In 1995 he demonstrated that Sergei Novikov's compact leaf theorem cannot be generalized to manifolds with dimension greater than 3. Specifically, Schweitzer proved that a smooth, compact, connected manifold with Euler characteristic zero and dimension > 3 has a C1 codimension-one foliation that has no compact leaf.
Other Resources About Paul A. Schweitzer
What Schools Are Affiliated With Paul A. Schweitzer?
Paul A. Schweitzer is affiliated with the following schools:
